
ADAB 820 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE--ETC F/6 13/3
MECHANICAL ARM CONTROL. (U)
OCT 79 R C WATERS N0001-75-C-0643

UNCLASSIFIED AI-M-5,9EhEEEIIII EEIIIE
IIIIIIIIIII

/ UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (W"en Date nod) I ;

I REPORT NUMBER 2GOVT ACCESSION NO. 32 ECIPIENT'S CATALOG NUMBER

AlI. Memo 549DA '/S2O ______ _____

4. TITLE (and Su.bitl.r _____________

Iler-ehan'ical Arm Control.!j~mrnu
C-

V U tHOR(a) I. CONTRACT OR GRANT NUMBER(@)

ichard C.] Waters I'NOO04-75.C-641
X. N01 4-77-C-0389

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK
Artificial Intelligence Laboratory AREA & WORK UNIT NUM iBERS

545 Technology Square
Cambridge, Massachusetts 02139

It. CONTRO LLING OFFICE NAME AND ADDRESS12 A.a

14 MONITORING AGENCY NAME & ADDRESS~i /ierI I ~rqjOffice IS. SECURITY CLASS. (ot this report,

Office of Naval Research UNCLASSI FIED
Information Systems ______________

Arlington, Virginia 22217 VISCHEDULE IN/DONGADN

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different from Report)

IS. SUPPLEMENTARY NOTESL

NoneC

0) 19 K EY WO RD S (Con fin.* on ,eee de I f nace aeay and Iden t fy by blo ck nwm.be r)C_;1
arm control trajectory planning

LLU dynamic equations LaGrange equations_J coordinate transformation80 5 2 2
CD 2 0. ~AST R ACT (Con IInsue on re vereae@ de it ne ceceeasy end Identl fy by block nuinber)

This paper discusses three main problems associated with the control o h
motion of a mechanical arm: (1) Transformation between different coordinate

sysemsassciaed iththearm, (2) Calculation of detailed trajectories for
the arm to follow (3) Calculation of the forces which must be applied to the
joints of the arnl'in order to make it move along a specified path.

Each of the above problems is amenable to exact solution. However, the re-sulting equations are, in general, quite complex and difficult to compute. (over

DD I ON. 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASS IF IED
S/400 -61 1 SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

-- o i

Block 20. (continued)

This paper investigates several methods for speeding up this calculation, and
for getting approximate solutions to the equations.

15 Cr

N -_

I I II II I I I I
liDI I

I II
. .. II ID I;

'Massachusetts Institute of Technology
Artificial Intelligence Laboratory

AIM-549 October 1979

MECHANICAL ARM CONTROL

by
Richard C. Waters

Abstract

This paper discusses three main problems associated with the control of the motion of a
mechanical arm.

1) Transformation between different coordinate systems associated with the arm.

2) Calculation of detailed trajectories for the arm to follow.

3) Calculation of the forces which must be applied to the joints of the arm in order to
make it move along a specified path.

Each of the above problems is amenable to exact solution. However, the resulting equations are, In
general, quite complex and difficult to compute. This paper investigates 'several methods for

speeding up this calculation, and fpr getting approximate solutions to the equations.

This memo is an updated version of an internal MIT working paper which originally appeared in

March, 1973 as MIT Vision Flash 42.

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts

Institute of Technology. Support for the laboratory's artificial intelligence research Is provided In
part by the Office of Naval Research under Office of Naval Research contract NUO14-77-C-SS9
and in part by the Advanced Research Projects Agency of the Department of Defense under Office

of Naval Research contract NO014-75-C-0643.

Richard C. Waters - I - Mechanical Arm Control

I. Introduction

This paper is concerned with the motion control portion of a mechanical arm control system, and
the kinds of computations it needs to perform. Figure I is a partial schematic of the flow of
information in a robot system containing an arm. The solid arrows in the figure indicate the principle
kinds of information used by the motion controller.

~~ cel ,f-OL
i

FoACC
: ol-0.

_
~ , . .

$e ,or oVY V x~r A A.m Se.f T;&.

Figure 1: The flow of information in an arm control system.

In this discussion it is assumed that the mechanical arm is made up of a series of links connected
by one degree of freedom joints. Further, it is assumed that the motion of the arm is caused by
forces applied to these joints. The force control inputs to the arm control the magnitude of these
forces.

Typically an arm will have internal sensors which measure the position (and perhaps the
velocity) of each joint. The outputs of these sensors make up the Internal sensation information
coming from the arm to the motion controllei. A generalized coordinate system based on these
values is a "natural" way for the motion controller to represent the state of the arm.

The control signals from the rest of the robot system to the motion control system are not
constrained by the way in which the arm is constructed, but rather by the fact that they need to be
concise and convenient from the point of view of the higher levels of the robotic system. This
means that in general these signals will be neither complete specifications of the path of an arm
motion, nor expressed in the coordinate system natural to the arm. Rather, they will contain only
essential information about the motion, expressed in a coordinate system which is easily usable by
the rest of the robot system.

In order to control the motion of the arm, the motion controller must take these control signals
along with feedback from the arm's internal sensors and produce signals to the force transducers in
the arm. This paper discusses three main aspects of this process:

A) Coordinate Transformation: Section II develops methods which can be used to transform
between joint oriented generalized coordinates for arm position, and other coordinate
systems.

B) Trainctory Calculation: The motion controller must develop a completely specified
detailed trajectory from the partial information in the external control signals. This
problem is discussed in Section Ill.

Mechanical Arm Control - 2 - Richard C. Waters

C) Force Calculation: Once a path has been selected, the arm must be moved along this
path. To do this the arm controller needs to calculate what forces must be applied to

the joints in order to obtain the rt quired accelerations. Section IV develops a set of

equations for doing this.

Each of the above problems is amenable to exact solution. However, the resulting equations are,

in general, quite complex and difficult to compute. This paper explores three ways for dealing with

this problem. First, it is sometimes possible to express the equations in a form which makes it

possible to calculate them rapidly. Second, there are a variety of methods available for obtaining

approximate solutions to the equations. Third, it is sometimes possible to design the arm in such a

way that the equations are simplified.

II. Describing the State of a Mechanical Arm

In order to facilitate analytical treatment of the arm, the first part of this section develops a

mathematical method for describing the joints and links in a mechanical arm and the relative

orientation of successive links. This gives precise meaning to the notion of a generalized coordinate

system based on the positions of the joints. The remainder of the section discusses methods for

converting from one coordinate system to another.

Describing the Relationships Between the Joints and Links In an Arm

Following the development in [Uicker 1965] the links in a mechanical arm are numbered, starting

with the reference frame as link 0 and proceeding outward with links 1, 2, ... n. The joints are

numbered correspondingly, with joint i connecting link i-1 and link i. For example, joint I connects

link 8 to link 1.

Associated with each link is an orthogonal coordinate system fixed in the link (see Figure 2). The

axes of the coordinate system for link i are chosen as follows:

Zi: lies along the axis of joint i[l. It can be chosen to go in either of two directions. (The
choice of Zn is arbitrary.)

Xi: lies along the common normal between Zi_1 and Zi. Its direction is chosen to go from

Zi_ ! to Zi. (X0 can be chosen freely as any vector normal to Z@.)

Yi: completes a right-handed coordinate system whose origin is the point where the X, and
Zi axes intersect.

Given the constraints above, the relative position of two adjacent links is completely described

by four parameters as follows (see Figure 2):

ai: the distance between the origins of the coordinate systems i-1 and i measured along Xi.

(This parameter is a fixed quantity determined by the geometry of link i.)

si: the distance between the origins of the coordinate systems i-I and i measured along

Zi1 1. (if joint i is a linear joint then si varies during the motion of the joint and is

called the joint variable. Otherwise, it is a fixed quantity determined by the geometry

of link i.)

Richard C. Waters - 3 - Mechanical Arm Control

*-Body 3

x/ / Body 2 Joint 3

Joint•, I' 'M

R a C Joint 2

X0 Body I'

Figure 2: Schematic of a three joint arm.

bi: the angle between the Zi_ 1 and Zi axes measured in a right-handed sense about Xi.
(This parameter is a fixed quantity determined by the geometry of link i.)

Oi: the angle between Xi. ! and Xi measured in a right-handed sense about Zi_ 1 . (If joint i

is a rotary joint then Ei varies during the motion of the joint and is called the joint
variable. Otherwise, it is a fixed quantity determined by the geometry of link i.)

The symbol qi is used to refer to the joint variable no matter whether it is si or e i. The column

vector Q of generalized coordinates

0 - (qI q2 ... qn)

completely specifies the position of the arm at a given moment.

Transforming Between Link Coordinate Systems

In order to make it easier to state the equations which transform between the different

coordinate systems associated with the arm, the position of a point p in link j, as measured in the

coordinate system fixed in link i, will by represented by the four element column vector iR

'Ri - l x z)

where x, y, and z are the coordinates of point p (in link j) measured in coordinate system i. For

convenience, iR1 (the coordinates of p measured in the coordinate system of the link it is in) is

abbreviated as rj, and 8Rj (the coordinates of p measured in the fixed reference frame coordinates
of link 0) is abbreviated as R1.

The coordinate systems of adjacent links are related by the following matrix equation:

Mechanical Arm Control - 4 - Richard C. Waters

i-IRj - A i'R j

where At Is the following 4x4 ti insformation matrix derived from at, st, bi, and 8i:

A i - icosei cos9 i -sineicosb i sinisinbi

isinei sine i cosi cosb i -sinisinbisi 0 sinbi cosb i

Note that Ai is a function of the joint variable qi (9f or si) and that therefore it will change with
time as the joint moves. As a result, i''Ri will in general change with time even though, since point

p is fixed in link i, ri will not change.
The transformation process can be extended to non-adjacent coordinate systems as follows:

iRk . iWjJRk [i_<ik]

where 'Wj is the 4x4 transformation matrix derived by multiplying together At,+ through Aj.

iUj , Ai+Ai+2 -. AjiA j

8W I is abbreviated as W i so that:

R i - Wit i

Velocity of the Arm

In the (non-inertial) coordinate system fixed in a link, all of the points in that link have velocity
zero. The velocity in the reference frame (link 0) of any point in the arm can be expressed in terms

of the rate of change of the joint variables by differentiating the above equation for Ri.

d(ir i . ri - Viri dr i =1dt = "dt

dWi n aWi . • (cWi
where V. - I UiAqd t 8 if ii]I dt 'j., k_1 d?'jI Tq

(1W i 8A . [PA
where Ui = W . Wj_l q Wi (= 8 if i0j]

Hand Oriented Coordinates

Since the senrors in a mechanical arm typically directly measure the joint variables q, the
generalized coordinates are a natural way to specify the position and velocity of the arm. However,
fronm the point of view of a system using the arm, this specification is not very useful. Some

specification (such as the hand oriented coordinates presented here) in terms of the cartesian
coordinate system fixed in the reference frame the arm is attached to is much more likely to be
useful. The motion controller has to be able to convert between these specifications.

In order to make the following discussion more concrete, it is based on a specific arm design, the
Scheinman arm [Scheinman 1969] (see Figure 3). There are many convenient systems for specifying
the position and velocity of a 6 degree of freedom arm such as this one. The one considered here
(see Figure 4), is referred to as "hand oriented". In this system, the state of the arm is described by
the position, orientation, velocity, and angular velocity of the hand as follows-

iL milI I m~ .. .mr . - -.."--..

Richard C. Waters Me-chanical Arm Control

Figure 3: The Scheinman arm design.

Mechanical Arm Control - 6 - Richard C. Waters

PH: the position vector, gives the coordinates, in the reference frame, for the point H
midway between the finger tips of the hand.

0t: the orientation angle vector, specifies the angles between the axes of the reference

frame (8) and the axes of a frame (H) fixed in the hand with origin at H as follows:
Ux is the angle between the Y and YH axes measured about X8 .
(y is the angle between the Zo and ZH axes measured about Y1"
(z is the angle between the X8 and XH axes measured about Z8 .

PH: is the velocity of point H.

&: is the angular velocity of the hand about H.

Together these four vectors give 12 parameters that specify the position and velocity of the
hand exactly, just as the 6 qi and their 6 derivatives 4i do.

10ibT 4 '14
'
$

T
W/o'l' T~lh I

A IV

wv Ir T .. "

Vt (1"o A
01/

Figure 4: Hand oriented coordinates for the Scheinman arm.

Converting Generalized to Hand Oriented Coordinates

In order to transform from generalized coordinates to the hand oriented coordinates presented
above, one need only know h6 (the position of point H expressed in the coordinates of the hand) and
h'6 (Ihe l"'.1ti11 cf another point in the hand) along with W6 and V6 (which are functions of qi and 4i

as shown above) and then calculate:

P11 Vic,

. VW1h' X IJ(fhp-h6) IX: is the cross product)

The orientation angles a can be calhulaled from Ihe coordinates of three non-colinear points in the
hand. The i! anfot nation- aboie are cumbersome, but not excessively so.

Richard C. Waters - 7 - Mechanical Arm Control

Converting From Hand Oriented to Generalized Coordinates

The reverse transformation from hand oriented coordinates to generalized coordinates is
considerably more difficult. The process outlined above can be inverted. Unfortunately, the
resulting equations are in general very complex because W6 and V6 are complex functions of qi and

4i. (It should be noted that there may be more than one set of generalized coordinates
corresponding to a given hand position.)

First, consider the problem of calculating the qi corresponding to PH and o. This problem is
discussed by Pieper [1968] and is quite complex in the general case. However, with an arm like
Scheinman's where the axes of the last three joints intersect, the problem can be divided into two
much simpler ones.

Referring to Figure 4, note that it is possible to calculate the wrist position vector PW directly
from PH and a without calculating any of the values of the qi. This is possible because the distance

between W and H does not depend on any of the qi and because the orientation of the vector

(Pw-PH) depends only on c. (This in turn is true because joints 5 and 6 are rotary joints whose
axes intersect, and because point W was chosen to be at the intersection of these axes, while point
H was chosen to be on the axis of joint 6.) Further note that the value of q4 does not affect the
position of W. (This is because the axis of joint 4 also passes through W.)

These facts can be used to decouple the transformation problem as follows: First, ql, q2, and q3
can be calculated separately based on PW alone. (Note that these coordinates are nearly the
spherical coordinates for W. They would be if the axes of the first three joints intersected.)
Second, q4, q5, and 6 can be calculated from c and the orientation of links 3 and 4. This is an
example of the fact that an arm can be designed in such a way that the calculations which need to
be performed are greatly simplified.

Now consider the problem of calculating the 4li from pH and 6. Unfortunately, it is not possible
to break this problem up into subproblems. However, Whitney [1972] has developed a method for
finding the based on the equation:

- J(o)6

where S, Q, S, and Q are the six element column vectors:

S (PHX PH PHz 0X 0(Y az) 0 - (ql ... q6)

-(H x PHY PHz &&y ad - (i11 ... 4r')

and J(Q) is defined by
asiJ (0) i i -=

It turns out that the partial derivatives are easy to evaluate, and that therefore it is easy to
calculate J(Q). Q can then be calculated by inverting J(Q):

6 - J(0P-'S

Unfortunately, inverting a 6Y6 matrix is relatively time consuming, and since the values of
calculated are accurate only at the one point Q, J(Q) has to be reevaluated and ivert often.

There is a simple approximation method which can be used to calculate 4. Given a position S and

..... ~. .1 Laa -- m~,.e~.~-,,.

Mechanical Arm Control - 8 - Richard C. Waters

a velocity 5, a new position S'=S+Sdt can be calculated based on the assumption that S will remain

constant for some small time dt. The corresponding generalized coordinates Q and Q' can then

computed. Finally, (can be estimated b- the equation:

dt

[Since the writing of this paper, Horn and Inoue [1974] have treated the transformation problem

in much more detail.J

Ill. Trajectory Selection

Referring back to Figure 1, the primary control signals from the robotic system to the motion
controller are requests to move the arm from one configuration to another. For the convenience of

the robotic system, each request should be concise, containing no more information than is necessary

to state the goal, and constrain the trajectory so that the arm does not strike any obstacles. In
order for the robotic system to exercise control over the velocity as well as the position of the arm,

these requests must contain specifications of velocity as well as position.
A list of position-velocity configurations the arm is constrained to pass through is a convenient

form for a motion request from the robotic system to take. By varying the number and spacing of
the configurations in the request, the robotic system can vary the amount of control it exercises

over the exact details of the trajectory. Additional flexibility can be gained by allowing some of the
velocities to be left unspecified. For instance, a request to moye the arm from position A to position

B while avoiding an obstacle might specify that the arm should pass through a point C, and come to
rest at B but not specify what velocity the arm should have at C.

Criteria For a Good Trajectory

The motion controller must expand the trajectory description it receives into a completely
specified trajectory. There are several requirements which the resulting detailed trajectory should

satisfy.

Closeness to intended trajectory: The most important criterion is that the trajectory selected
must be close to the one intended by the robotic system. In particular it must be close enough so
that the arm does not strike any obstacles when it moves. The essence of this requirement boils

down to three subcriteria"

I) There must be some easy to compute algorithm known to both the motion controller and

the robotic system which specifies what the intended trajectory is. For example, the

,ilh.ided trajectory m tht be taken as the piecewise linear trajectory through the

positions ,,pecified. Alternatively, if the algorithm used by the motion controller is
simple enough, it could be used by the robotic system when planning the trajectory.

2) 1here should be ,ome agreed upon notion of closeness. For example, requiring that the
artual lrajezory not inake riY excursions outside of an envelope centered on the
intended one.

3) There must be some way for the robotic system to exercise more precise control over
the motion when it has to in order to maneuver the arm in a tight spot. To this end,
the trajectory selection algorithm used by the motion controller should have the

Richard C. Waters - 9 - Mlechanical Arm Control

property that the difference between the selected trajectory and the intended one

decreases when the points in the trajectory description get closer together.

Physical Limitations: The range of motion, velocity, and acceleration of the arm are all bounded

by the design of the arm. Further, the physical reality is that all these variables take on continuous
values. As a result of this, it is not possible for the arm to actually follow the piecewise linear

trajectory through the points. The robotic system must be aware of these limitations, and not ask

for impossible motions.
Optimal Time: All things being equal, the fastest trajectory through the requested points should

be selected. However, there are two problems with this. First, the fastest trajectory between two

points may be quite different from the intended one. Second, it is not easy to compute what the
optimal trajectory is. In order to get from one point to another in minimal time, one must use bang

bang control (where the force on each joint is either zero, maximally positive, or maximally negative

at each instant of time). With this kind of control, the trajectory is completely specified by the

points at which the forces are switched. Unfortunately, in order to find the switching points, a set of

partial differential equations must be solved (see Kahn [1969)). The key problem is that the
relationship between force and acceleration (see the next section) varies depending on what the

position and velocity of the arm is. Kahn develops some 'approximate methods for determining the
switching points. However, they are still too complex for use in a real time application.

Computational limitations: The detailed trajectory should be easy to compute and concisely
representable. In particular, it should be possible to compute the trajectory in real time.

Constant Maximum Acceleration Trajectories

A simple trajectory calculation method results from applying bang bang control while assuming
that the maximum acceleration of the arm is a constant independent of the position and velocity of

the arm. This constant value must be chosen so that it can always be achieved. This method
Droduces suboptimal trajectories because it ignores the fact that larger accelerations are possible in

most positions.
The algorithm for finding the points at which the acceleration should' be switched is based on

representing a trajectory for the arm as a curve in phase space. Phase space for a 6 link arm has

12 dimensions: 6 for the joint variables, and 6 for their derivatives. The method is illustrated in
Figure 5. The figure is a phase space graph of trajectories for a one link arm. The vertical axis is

made proportional to the square root of the velocity o that trajectories with constant acceleration

become straight lines. The box around the figure signifies that the position and velocity are both
bounded by: -1 !5 x s 9 and -3_ 5 ;< 3. It is assumed that the acceleration is bounded by -1 < ; s-.

Referring to the figure, assume that the arm is at point A (position 1, velocity 1) and that the
robot system has requested that the motion controller move the arm to point B. Any trajectory

leaving A must go out through the horizontally shaded region, and any trajectory approaching B
must go through the vertically shaded region (arrows on the trajectories indicate direction of travel).

Such a trajectory is A-E-F-B. The acceleration changes at E, there is no trajectory with constant
acceleration from A to B. (There is no change of acceleration at F.) Under the assumption of

constant maximal acceleration, The time optimal trajectory is A-C-D-B. This trajectory accelerates
from A to C and then decelerates from C to B through D.

It can be shown that the optimal trajectory between any two points has at most one place

Mechanical Arm Control - 18 - Richard C. Waters

om-Oa 0.",l2

"T - C-V

4A

P

Figure 5: Phase space graph for trajectories.

where the acceleration changes. As a result, this change point, together with the end points
completely specifies the trajectory. The problem of finding the change point can be reduced to
finding where straight lines intersect on the graph. Using points A and B as an example, the optimal
trajectory must leave A on one of the two extremal acceleration lines. Similarly it must enter B on
one of the two extremal acceleration lines terminating on B. The optimal trajectory can be found by
seeing which of the extremal lines leaving A intersect which of the extremal lines entering B. (There
can be two intersecting pairs.) The algorithm can be easily extended to arms with more than one
joint. The trajectory can be found for each joint separately, and then modified to synchronize the
motions with each other by adding segments of zero acceleration into the motions of individual
joints.

This method of calculating a detailed trajectory meets the criteria set forth abovei very well. It
is fast to calculate, and the trajectory can be concisely represented by the acceleration switching
points. The trajectories produced are reasonably fast, and do not violate any of the physical
limitations of the arm. The only problem with the trajectories produced is that they are not very
clo-e to piecewise linear trajectories through the requested points. However, they do have the
property that as the points get closer together, they do get closer to the piecewise linear paths.
Further, the trajectory planning algorithm is simple enough that it could be used as the definition of
intended trajectory. [Since the writing of this paper, this approach to trajectory calculation was

used in the robot control system described in (Waters 19741.

--.- .ta S a ~ ,s.- ,

Richard C. Waters - 11 - Mechanical Arm Control

IV. Dynamics

Once a trajectory has been determined, the arm has to be guided along the trajectory. At each

time interval, it is easy to determine, from the position and velocity of the joints, what accelerations

should be applied to the joints so that the arm will be on the trajectory at the next time interval.

ilowever, the motors which move the joints produce forces not accelerations. The controller must

det rmine what force Fi should be applied to joint i in order to produce the required acceleration 4i"

Due to the way the joints are interconnected, the force which needs to be applied at a given joint

depends not just on the acceleration desired at that joint, but also on what is happening at the rest

o, the joints. One way to take this interaction into account is to use the equations of motion for the

arm in order to calculate the forces. It should be noted that the equations of motion developed

below are based on an idealized model of the arm, and that therefore they do not model the arm

exactly. For example, they ignore the forces generated by friction in the joints. If the friction

forces are large, then the dynamic equations alone may not be adequate to control the arm.

The Lagrangian Equations of Motion

Following the development of Uicker (1965] as presented in Kahn [1969], the n equations of motion

for the arm can be obtained through the use of Lagrange's equations for a nonconservative system.

d &1. a 8L Fi i=1,2, . n

where the Lagrangian L is the difference between the kinetic and potential energies.

L =K -P

The kinetic energy of a particle of infinitesimal mass dm on link i having coordinates

Ri - Wir i = (1 Xi Y i Zi) is:

dki 1(W+Y?+Z2)dm

or dki a tr(Virir1VI)dm [tr: is the trace)

where Vir i r I= (T U4j)r i [see Section II)

The total kinetic energy of the link can be found by integrating over the mass of the link.

k i = rtr(VirirTV!)dm tr(Vif(riri)dmVT) - itr(ViJiVT)

Vi is independent of dm allowing the integral to be shifted inward. The inner integral can be

precalculated due to the fact that ri does not depend on qi or 4i and the fact that the mass

distributions of the links in the arm do not change with time (with the notable exception of the hand,

see below). The result, the inertia tensor (designated Ji), is a complete description of the inertial

properties of the link.

~lechanical Arm Control - 12 - Richard C. Waters

Ji - i J(-kill~ki22+ki331 ki12 ki13

J i i ki 2 (ki ll-ki22+ki33) ki23

zi kil3 ki23 (kilk+ki22-ki33)

Where mi is the mass of the link, (I i Y z) = i is the position of the center of mass, and kij k is the
square of the jkth radius of gyration about the origin of coordinates in link i.

When the hand picks up something, its inertial characteristics change, particularly if the object
picked up is either heavy or long. In this formulation, it is possible to take account of the object in
the hand by changing the J matrix for the hand. This could be done in several ways. First, a priori
knowledge of the object's inertial characteristics could be used to alter Jhand" Second, partial
information about the object such as its mass and longest dimension could be used to make an
approximate correction to Jhand" For instance, if the hand picks up a block which has relatively
small dimensions, then probably only its mass has to be taken into account. If the mass is also small
the the object can probably be ignored. Third, the arm system could be used to discover the inertial
characteristics of the object it is holding. This could be done by applying small canonical forces to
the joints near the hand, and observing the accelerations produced. These experiments could then
be used to estimate the components of Jhand"

The total kinetic energy of the arm is given by:

K Iltr(Vi JiVT)

The potential energy of the system is equal to the sum of the work required to displace the center

of mass of each link from a horizontal reference plane.

n
P- _ImiGWiFi

i-i
where C - (0 Gx G Gz)

The row vector G is the acceleration due to gravity, Fi is the position of the center of mass of link i,

and P is a constant which depends on the particular reference plane chosen.
Performing the differentiations in Lagrange's equations and simplifying gives the following n

equations of motion:
n

F i = - .(triUjiJ.(pj+Li)) - Gji)

where:

Pi k= UJk'ik: The reaction forces due to the inertial properties of the links.

i i
Lj "k 1 1"=TI Uik(l.l01 : The forces produced by the interaction of the link velocities.

Gi i mjGUj Fi: The forces due to gravity.

U1 .- w: The effect of the motion of one joint on the position of another.

QnL

Richard C. Waters - 13 - Mechanical Arm Control

aU. a2Wi
UiJk aq = i" k: The interaction of joint motions.

3A - a2A.
A, T ' . -: The fundamental effects of moving a joint.

G. Jj, mj, F j: The static properties of the arm.

If the equations are evaluated straightforwardly just as written they require an inordinate
amount of computation. The dominant computational cost comes from doing 4x4 matrix multiplications

each of which requires 43=64 scalar multiplications. A secondary cost comes from doing 4x4 matrix
additions and other operations of order 42=16 (such as multiplying a scalar times a matrix,

multiplying a vector times a matrix, and multiplying two matrices where only the trace of the answer
is required). Lower order operations such as adding scalars will be ignored in the discussion below.

For a 6 link arm, a naive calculation of the forces requires 2254 matrix multiplications and 973 order

42 operations. (For convenience, this kind of calculation estimate will be abbreviated as

2254m+973a in the discussion below.) This would take 8 seconds in floating point on a PDP/ 11-45.

Methods For Speeding Up the Calculations

This section describes five approaches to speeding up the calculation of the required forces:

reformulating the equations so that they can be evaluated faster, simplifying the equations by

-eliminating terms, using direct acceleration servoing of the arm, using extrapolation and interpolation,

and using precomputed values of the equations.

Reformulating the Equations More Efficiently

There is a large amount of structure in the equations which can be used to speed up their

evaluation by several orders of magnitude. The key insight is that there are many subexpressions

which appear over and over again during the computation. To start with, in a naive evaluation of the

equations U6 6 is computed 12 times and L6 is computed 6 times. If the values P , Lj, GPI U,, and
Uijk are recorded when they are evaluated so that they are never evaluated more than once, then
the computation is reduced to 486m+275a, a savings by a factor of 5.

Deeper levels of repetitiveness are illustrated by the calculation of the Uij. Section It showed
that:

Uii I'i-IaAj •o !
Uij - i-j1~ Ji i

The fact that Uij = 0 when i<j has already been used to simplify the equations of motion by making
the upper limits of the inner sums j instead of n and the lower limit of the outer sum i instead of I
so that only instances of Uij where ij appear. These reductions in range save a great deal of

useless computation. The formula above in conjunction with the formula for JWi can be used to
derive the following recurrence relations:

W. - JlJi_Ai Wi - I [the identity matrix]

Ui i AWi -1
Ulij -Ui_ljAi i>J

Mechanical Arm Control - 14 - Richard C. Waters

The key advantage of this formulation is that it makes it possible to compute all of the D". Uij in
the same amount it time it takes to compute the n U,.

The recurrences above can be used to develop a recurrence relation for P1j as follows:

Pi - Ujk

'i-1
k 1 1 Uj1kcjk)Aj + Uj~

P1 U14

ZI.A similar approach can be taken to the calculation of Uijk and Lj. Since Uijk-0 if ij or i<k and

. 0. if i~j the Uijk have the following typical form:

3aA* . I aA.~k~ ka 1
(U -j Fk kUJ , jckci

The following recurrence relations can be derived for the ik

-ik Uikj

.3A*
= U 1 .-=bWi

Uijk =Ui-ljkAi ik and i,.i

These can be used to get recurrence relations for L.

Lj.

kit =1ikk

i-li-i j-1 j-i
2: 1 X Ikk4) + Y Ujj~~ + 2: Ui.143+uj~

k-L i i-I 21A ++j~
- ,A + 2Z jlk i-q. 4j *

k-1

Note that in this formulation, only the Ujj have to be calculated. The other Uijk do not need to be
calculated at all. The sum in the middle term is the quantity Vj-1 introduced in Section 1I. It also
has a recurrence relation.

= jAj + jj

Using these relations the forces can be computed using only 70m+106&. This is an additional
improvement by a factor of 6. This reduces the computation time to around .25 second.

Richard C. Waters - 15 - Mechanical Arm Control

[Since the writing of this paper, Luh [1978], working with the Newton-Euler equations of motion
came up with an additional recurrence relation. Hollerbach [1979] has applied this relation to the

Lagrangian formulation used above. The new recurrence relation is based on the quantity Di:

n
F i - tr(Uii0 i) - .Gji

J-1

n.
Di , .1.'WjJ j (Pi+Lj) T

J=l
nT
-Z .i+wjJj(Pj+Lj)T) + Ji(Pi+Li) T

= t1 j = i + 1

= Ai+Di+l + Ji(Pi+Li)T

On = in(Pn+Ln)T

This reduces the computation to 60m+81a. The reason the impact is not greater is that the Uij i'j

still need to be calculated in order to calculate Gji. (This was not an issue in the derivations of Luh

and Hollerbach because they chose to ignore the gravity forces.)]

The technique used by Luh and Hollerbach to derive a recurrence relation for Di can be

straightforwardly applied in order to derive an anologous recurrence relation for the gravity forces.

F i trtUii i) - GUii i

n.
G i .Z. i jj

rn n

- Ai+l(I i+ jmj + Fimi
i-i+l

- Ai+l(;i+ 1 + rim i

Gn ,, Fnmn

With this reformulation, the Uij i~j no longer have to be calculated at all. The calculation Is

reduced further to 45m+77a. This gives an overall improvement by a factor of 58. Another aspect

of the way the efficiency of the calculation has been increased is that while the effort involved in a

naive calculation is proportional to the cube of the number of links, the effort in the improved

formulation is linear in the number of links.

Before going on to other methods for improving the calculation consider how this computation is

divided between the three basic parts of the computation. The computation needed solely to

compute the contribution of the gravity forces is 17a (6%). The computation needed solely to

compute the contribution of the second order forces Lj (this includes the computations of V and

Ujjj) is 28m+38a (46%). The remaining computation needed to compute the contribution of the basic

inertial forces P. is 25m+22a (48%).

[Hollerbach [1979] has noted that a further improvement by a factor of 2 can be gained by

reformulating the equations using 3x3 matrices instead of 4x4 matrices. The 4x4 matrices Ai are a
mathematically convenient way to express the relationship between adjacent coordinate systems, but

they are compulationally inefficient. The resulting formulation has essentially the same number of

matrix multiplies and adds, but each one only takes about half as long.]

It is probably possible to compute the equations in fixed point rather than in ..oating point. This

gives an added improvement by a factor of 4 on a PDP/1 1-45. Putting all these factors together.

Mechanical Arm Control - 16 - Richard C. Waters

the calculation is speeded up 400 times, and the time required is reduced to 2gms on a PDP/1 1-45.
Though it would be nice if the time could be reduced by another order of magoitude, this is really
quite fast, and it makes it hard for approximation techniques to compete with complete evaluation.

Simplifying the Dynamic Equations

One way to speed up the evaluation of the equations is to simplify them by omitting some of the
terms in the expressions. This can be done in two basic ways. First, the arm can be designed so
that some of the terms in the equations vanish. Second, nonvanishing terms can be ignored yielding
approximate values.

CQunterbalancing: If an arm is counterbalanced in order to eliminate the effects of gravity, then
all of the Gi will be zero, and need not be calculated. However, as shown above, the Gi are so easy
to compute that almost nothing is saved by omitting them. If the arm is not counterbalanced, then it
is usually not possible to ignore the Gi because they are some of the largest forces on the arm.

Joint locking: If the arm is designed so that individual joints can be physically locked with a pin
or with friction so that they cannot move, then this can be used to speed up calculation. If locking is
used when a joint is to be kept motionless, then the joint is in effect eliminated from the arm. No
force has to be calculated for it, and it does not contribute to the forces required at the other joints.
If the computation is properly arranged, the links before and after the locked joint can be
consolidated into one link, and the calculations can be performed as if the arm had only n-i links.
For example, if three of the links of a six link arm were locked, the calculation would be reduced to
19m 34a, a savings of 57%.

anoring L: If the arm is moving slowly, the terms L will be small and can be ignored. This
saves 46% of the calculation required. If the arm is moving rapidly, the Li can be quite large and
cannot be ignored.

Reducing joint interaction: The arm can be designed so that interaction between joints is
minimized and some of the Uij become zero. For example, if the first three joints are mutually
perpendicular linear joints, then the motion and acceleration of one will not affect the others.
Unfortunately, making a few Uij zero will not speed up the computation any because recurrence
relations are being used to compute the terms in the equations, and no computation is saved in this
process unless the last term in a series can be eliminated. One approximation approach would be to
design the arm so that each link is significantly smaller and lighter than the previous link and then
ignore all of the effects of a link on the links before it. This would have the effect of eliminating the
outermost sum in the equations so that:

I i =trfUiiJi(Pi+Li)T) - Gi

Due to the efficient way in which Di and Gi are computed, this saves only 5m+5a. As a result, the
approximation required is not worth the savings obtained.

Direct Acceleration Servoing
One way to calculate the dynamic equations very rapidly would be lo use special purpose

hardware such as fast matrix multipliers. This is expensive, but would solve all problems. It is
interesting to note that there is one piece of hardware around (the arm itself) which can very
rapidly compute the inverse of the equations. Namely, given a particular force some acceleration is

Richard C. Waters - 17 - Mechanical Arm Control

produced. This yields a force-acceleration pair satisfying the equations.
The most direct method to utilize this information would be to use high speed servoing to

directly control the acceleration of the joints. (The time delay in the servo loop must be quite small
in order to keep the error acceptably small.) This approach requires almost no computation and
would be very effective. It is inherently better than using the equations above, because the

dynamic equations ignore friction and describe the arm only in an idealized sense.
There is however a problem with this approach. In order for it to work, it must be possible to

obtain accurate measurements of the actual acceleration over short time intervals. (Note that the
dynamic equations do not require that you be able to measure acceleration, but only that you know
what acceleration you want.) The most direct way to obtain acceleration measurments would be to
put accelerometers on the joints. This is complicated by the fact that the sensors must be arranged
so that they measure the angular (rather than linear) acceleration of rotory joints. Further, the
measurements must be converted so that they give the acceleration of a joint in terms of the
(non-inertial) frame the joint is in, rather than in terms of the reference frame. This would probably
require two sets of accelerometers at each joint: one to measure the accleration of the frame, and

one to measure the acceleration of the joint.
If accelerometers are not used, then the acceleration must be estimated by using differences in

velocity, or second order differences in position. This requires very high accuracy in the velocity
(position) measurements. Consider the kind of typical values of position, velocity, and acceleration
one might find in a joint. A rotary joint might have a range of motion of 3 radians, a maximum
velocity of I radian/sec, and a maximum acceleration of 1 radian/sec2 . If the sampling interval is T
then the smallest change (A) in acceleration which can be detected by differences in velocity
measurements is related to the smallest change (V) in velocity which can be detected by the formula

A--- Similarly V=- where P is the smallest change' in position which can be detected.

If T was as large as 18' 3 sec and only 7 bits of accuracy in acceleration were needed (A-18- 2),
then if accelerometers were not available at the joint, V would have to be equal to j-5 (17 bits of
velocity). If tachometers were not available either, then P would have to be equal to 10 - 8 (29 bits

of position information). It would be prohibitively expensive to obtain that much accuracy in position
measurement, and very difficult to obtain the required accuracy in velocity measurement. As a
result, this approach is probably not possible without accelerometers on the joints, and certainly not
possible without accurate tachometers.

Extrapolation and Interpolation

Extrapolation and interpolation can be used to compute the forces for one set of parameters to
the equation based on the values for other sets of parameters. The values to extrapolate from could
come either from some data base of values (see below), from evaluating the equations directly, or
from the arm itself. (As discussed above, the arm itself can only be used if it is possible to measure
acceleration accurately). The purpose of doing extrapolation is to spread the cost of evaluating the
equations over more data points.

In order to get first order accuracy (for a 6 link arm), the partial derivatives of each force with
respect to the 18 parameters (qi, 4i, and 4i) to the equations must be estimated. In order to do this
quickly 18 pairs of function values are needed, where only one input varie! i each pair. If the
values are coming from the recent behavior of the arm or recent evaluations of the equations then

-.. . .. c4rrr.-u-

Mechanical Arm Control - 18 - Richard C. Waters

such pairs will not be available, and the estimation will have to'be based on whatever pairs are
available. (At a minimum, 7 different function values are required in order to have 18 pairs of
values.) In order to estimate the derivatives using random pairs, 6 18x18 matrices have to be
inverted. This approach is impractical because inverting such large matrices takes much more time
than computing the exqct equations. Further, if the 7 points are very far apart in parameter space,
the resulting estimates may not be very accurate at all.

Path length extrapolation: Full first order extrapolation is only possible using stored data. In
order for extrapolation from dynamic data to be fast enough to be preferable to just computing the
equations, very low order extrapolation would have to be used. The problem with first order
extrapolation is that there are just too many parameters to the equations. The logical limit of the
extrapolation approach is to view the equations for the forces as functions of a single parameter

(distance along the trajectory) rather than 18. If Q, 0, and Q are all slowly varying, then the Fi will
be slowly varying functions of path length. F can then be approximated by extrapolating from prior

points on the path. It is important to note that in general, Q tends to change abruptly, and that
extrapolation is not accurate beyond such a change. This problem is reduced when working with the
kind of trajectories discussed in the last section where there are relatively large periods of constant
acceleration. (Since the writing of this paper, path length extrapolation of computed force values
was used in the arm control system described in [Waters 19741]

Precomputaton of the Equations

One way to deal with the problem of computing the dynamic equations in real time is to compute
them off line and create a data base of function values. There are two main ways to use
precomputation: create a tabular representation of the function over its entire domain, or
precompute just those values which will be used. In either case interpolation has to be used in
order to apply the precomputed data to the actual situations which arise.

Complete coverage: Trying to obtain complete coverage is impractical. The key difficulty is that
a huge number of values has to be stored because the equations have so many parameters. As
discussed above, in order to be able to efficiently interpolate between the stored data points, the
stored points must be orthogonal in that each point is surrounded by other points which differ from
it in only one parameter. With a 6 joint arm, if the stored data covered just 5 different values for
each parameter there would have to be 518 -4x181 2 sets of 6 values. It is not possible to
precompute that much data, nor to store it. Also note that if the information was precomputed, it
becomes obsolete as soon as the hand pickes something up because this changes the inertial
properties of the arm.

It is possible that it might be more efficient to store the 6x18-108 partial derivatives with each
point explicitly, and to store fewer points. However, it is unlikely that this approach would lead to

the required reduction of 9-18 orders of magnitude in the number of data points stored. (A
reduction of 2 orders of magnitude is needed just in order to break even.)

The storage problem can be partly ameliorated by storing partial precomputation information
which factors out some of the parameters. The dynamic equations can be rearranged (see

Paul (1971]) so that:

F - O(O,6)i + E(O.6)

Richard C. Waters - 19 - Mechanical Arm Control

This formulation makes it inherently easier to adjust for changes in acceleration. Complete coverage
with this information at 5 values per parameter requires 512 -2x18 8 sets of 42 values. (If
derivatives are stored, 42x12=504 more values are required at each point.) This is still much to
much data to be practical.

Covering only a single trajectory: One way to solve the space problem is to store only the
information which is actually going to be needed. Paul [19711 who apparently evaluated the
equations as written rather than by using recurrence relations, evaluated them off line before a
motion was started. He planned a detailed trajectory consisting of the exact position and velocity of
the arm in each time interval. Then he precomputed the matrix D and the vector E at each time
interval. He did not use interpolation, but rather just used the D,E pair closest to the current phase

space position.

With this method, small errors in trajectory can be corrected by varying the accelerations.
However, if a large error ever develops then the controller is unable to get the arm back on the
correct trajectory because its precomputed D's and E's are accurate only in the vicinity of the points
for which they were calculated. Note that this method has the additional defect that overall there is
no time saved. The arm can move very fast, but then it must sit and wait while the D's and E's for
its next trajectory are computed off line.

Storing Typical Trajectories: A compromise between the two methods above is to store
precomputed information about small restricted areas of the domain. This is predicated on the idea
that most of the motions of the arm are stereotyped, and follow a reasonably small number of typical
trajectories. Further, any non-standard motions the arm makes can be made slowly. Introspection
suggests that this could be true of human motions. One of the prime tenents of sports is that you
should always get into a standard position before performing a motion in order to increase your
precision.

One way to store information about typical trajectories is to describe the regions of the domain
they pass through. If interpolation is to be used rather than just using the nearest available data
point, derivatives would have to be stored with the points. It is interesting to note that if
information about typical trajectories is stored this way, then it is clear how the arm controller can
learn about a new trajectory by doing it, and remembering the properties of that region of phase
space. (Since the writing of this paper, his basic approach to arm control was taken by
Raibert (1977.]

Another way of storing lypical trajectories would be to use a procedural form. There would be
a procedure for each motion, and the procedure would be parameterized by values appropriate to
the motion. For instance, throwing a ball would be parameterized by the velocity the ball was
supposed to have, and the point at which it was to be released. However, it is not obvious how
these procedures can be derived.

Mechanical Arm Control - 28 - Richard C. Waters

BIBLIOGRAPHY

Hollerbach, J.M., [1979], "A Recursive Lagrangian Formulation of Manipulator Dynamics and

a Comparative Study of Dynamics Formulation Complexity", MITIAIM-533, June, 1979.

Horn, B.K.P; and Inoue, H., [1974], "Kinematics of the MIT-AI-VICARM Manipulator",

MIT/AJ/WP-69, May 1974.

Kahn, Michael E., [1969], "The Near-Minimal-Time Control of Open-loop Articulated

Kinematic Chains," PhD Thesis Stanford University, December, 1969, (also Stanford AIM

186).

Luh, J.; Walker, M.; Paul, R., [1979], "Newton-Euler Formulation of Manipulator Dynamics for

Computer Control*, to be presented at the 2nd IFAC/IFIP Symposium on Information

Control Problems in Manufacturing Technology, Stuttgart, Germany, October, 1979.

Marion, Jerry B., [1965], "Classical Dynamics of Particles and Systems," Academic Press,

New York, 1965.

Paul, Richard, [1971], "Trajectory control of a Computer Arm," Stanford University,

February, 1971.

Pieper, D.L., [1968], "Kinematics of Manipulators Under Computer Control," PhD Thesis

Stanford University, October, 1968 (also Stanford AIM 72).

Raibert, M., [1977], "Motor Control and Learning by the State Space Model",

MIT/Al/TR-439, September 1977.

Scheinman, V.D., [1969], "Design of a Computer Controlled Manipulator," Stanford AIM 92,
June, 1969.

Uicker, J.J. Jr., [1965], "On the Dynamic Analysis of Spatial Linkages Using 4 x 4 Matrices,"

PhD Thesis Northwestern University, Evanston Illinois, August, 1965.

Waters, R.C., [1974], "A Mechanical Arm Control System", MIT/AIM-381, January, 1974.

Whitney, D.E., [1972], "The Mathematics of Coordinated Control of Prosthetic Arms and

Manipulators*, ASME Journal of Dynamic Systems Measurement and Control, December,

1972, pp. 383-389.

